Optimizing over Two Embeddings of the Grassmannian
 Hannah Friedman

Example: Euclidean Distance

Let \mathbf{u} be a point in \mathbb{R}^{2}. What is the closest point to \mathbf{u} on the unit circle?

Function

Lagrange Multiplier

$$
2\left(x_{1}-u_{1}\right)+2 \lambda x_{1}=0
$$

$$
2\left(x_{2}-u_{2}\right)+2 \lambda x_{2}=0
$$

$$
x_{1}^{2}+x_{2}^{2}-1=0
$$

$$
\mathbf{x}= \pm \frac{1}{\|\mathbf{u}\|} \mathbf{u}
$$

Lagrange Multipliers

Any optimal solution \mathbf{x} to the following optimization problem

$$
\begin{aligned}
& \operatorname{maximize} f(\mathbf{x}) \\
& \text { subject to } G(\mathbf{x})=\left(\begin{array}{lll}
g_{1}(\mathbf{x}) & \cdots & g_{k}(\mathbf{x})
\end{array}\right)^{T}=0
\end{aligned}
$$

must satisfy $\nabla \mathscr{L}(\mathbf{x})=0$ where $\mathscr{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\sum \lambda_{i} g_{i}(\mathbf{x})$.
$\nabla \mathscr{L}(\mathbf{x}, \lambda)=\left\{\begin{array}{l}\nabla f(\mathbf{x})-\sum \lambda_{k} \nabla g_{k}(\mathbf{x}) \\ =0 \\ g_{1}(\mathbf{x})=\cdots=g_{k}(\mathbf{x})\end{array} \quad=0.4\left\{\begin{array}{l}\operatorname{rank}(\operatorname{Jac}(G(\mathbf{x})) \mid \nabla f(\mathbf{x}))=\operatorname{rank} \operatorname{Jac}(G(\mathbf{x})) \\ G(\mathbf{x})=0\end{array}\right.\right.$
where $\operatorname{Jac}(G(\mathbf{x}))=\left(\begin{array}{lll}\nabla g_{1}(\mathbf{x}) & \cdots & \nabla g_{k}(\mathbf{x})\end{array}\right)$.

Algebraic Degree of an Optimization Problem

Optimization Problem

optimize $\quad f(\mathbf{x})$
subject to $G(\mathbf{x})=0$

Critical Points

$$
\begin{aligned}
& \operatorname{rank}(\operatorname{Jac}(G(\mathbf{x})) \mid \nabla f(\mathbf{x}))=\operatorname{rank} \operatorname{Jac}(G(\mathbf{x})) \\
& G(\mathbf{x})=0
\end{aligned}
$$

Definition. The algebraic degree of an optimization problem is the number of critical points.

When the variety is not zero dimensional, its degree can still give an idea of the complexity of the problem.

The algebraic degree of a problem is a proxy for the difficulty of correctly solving the problem.

Degrees of Optimization Problems

$$
\begin{aligned}
& \text { optimize } f(\mathbf{x}) \\
& \text { subject to } G(\mathbf{x})=0
\end{aligned}
$$

Fixed $f(x)$:

$$
\begin{aligned}
f_{\mathbf{u}}(\mathbf{x}) & =\|\mathbf{x}-\mathbf{u}\|^{2} & & \text { Euclidean Distance Degree } \\
f_{\mathbf{u}}(\mathbf{x}) & =\sum u_{i} \log \left(x_{i}\right) & & \text { Maximum Likelihood Degree } \\
f_{\mathbf{u}}(\mathbf{x}) & =\sum u_{i} x_{i} & & \text { Linear Optimization Degree } \\
& \vdots & & \vdots
\end{aligned}
$$

Sum of Polar Degrees
Euler Characteristic
First Polar Degree

The Grassmannian

The Grassmannian $\operatorname{Gr}(k, n)$ is the space of k-subspaces of n-space.
What's the best way to work with $\operatorname{Gr}(k, n)$?

- Equivalence classes of $n \times k$ matrices with the same column span
- Plücker coordinates
- Orthogonal projection matrices

The Two Lives of the Grassmannian

Plücker Coordinates

Pure Math
Projective Variety
Algebraic Combinatorics
Particle Physics
!

Orthogonal Projection Matrices

Applied Math
Affine Variety
Numerics and Statistics
Data Science

For more on different embeddings of the Grassmannian, check out my recent paper!
"The Two Lives of the Grassmannian," arXiv:2401.03684

Plücker Coordinates

L : k-dimensional subspace of $\mathbb{R}^{n} \quad A: n \times k$ matrix whose columns span L The Plücker coordinates for L are $x_{I}=\operatorname{det}\left(A_{I}\right)$ for $I \subseteq[n],|I|=k$, where A_{I} is the $k \times k$ submatrix of A formed by taking the rows indexed by I.
Example ($\mathbf{k}=\mathbf{2}, \mathrm{n}=5$).
$A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \\ a_{51} & a_{42}\end{array}\right)$

$$
x_{i j}=\operatorname{det}\binom{a_{i 1} a_{i 2}}{a_{j 1} a_{j 2}}
$$

$$
=a_{i 1} a_{j 2}-a_{j 1} a_{i 2}
$$

$$
\begin{aligned}
& x_{12} x_{34}-x_{13} x_{24}+x_{14} x_{23}=0 \\
& x_{12} x_{35}-x_{13} x_{25}+x_{15} x_{23}=0 \\
& x_{12} x_{45}-x_{14} x_{25}+x_{15} x_{24}=0 \\
& x_{13} x_{45}-x_{14} x_{35}+x_{15} x_{34}=0 \\
& x_{23} x_{45}-x_{24} x_{35}+x_{25} x_{34}=0
\end{aligned}
$$

Orthogonal Projection Matrices

$L: k$-dimensional subspace of $\mathbb{R}^{n} \quad A: n \times k$ matrix whose columns span L The $n \times n$ matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ is the unique projection matrix onto L. The matrix P satisfies

$$
P^{T}=P, P^{2}=P \text { and } \operatorname{trace}(P)=k .
$$

If a symmetric matrix P satisfies the above equations, it is the projection matrix onto some k-dimensional subspace, so the projection Grassmannian is

$$
\operatorname{pGr}(k, n)=\mathscr{V}\left(\left\langle P^{T}-P, P^{2}-P, \operatorname{trace}(P)-k\right\rangle\right) .
$$

Theorem. (Devriendt, F., Reinke, Sturmfels 2024)

$$
\mathscr{J}(\operatorname{pGr}(k, n))=\left\langle P^{T}-P, P^{2}-P, \operatorname{trace}(P)-k\right\rangle .
$$

Moving Between the Two Lives

Projection matrix P
Plücker coordinates \mathbf{x}

Take maximal minors of the first k rows of P

Lemma. (Bloch, Karp 2023)

$$
p_{i j}=\frac{\sum_{K \in\binom{[n]}{k-1}} x_{i K} x_{j K}}{\sum_{I \in\binom{[n]}{k}} x_{I}^{2}}
$$

Two Maximum Likelihood Problems on the Grassmannian

maximize $\sum_{I \subseteq\binom{[n]}{k}} u_{I} \log \left(x_{I}\right)$
subject to $\mathbf{x} \in \operatorname{Gr}(k, n)$

$$
\text { maximize } \sum_{\substack{I \subseteq\left(\begin{array}{c}
{[n] \\
k}
\end{array}\right)}} u_{I} \log \left(q_{I}\right)
$$

subject to $\mathbf{q} \in \operatorname{sGr}(k, n)$
$\operatorname{sGr}(k, n)=\left\{\left(x_{I}^{2}\right)_{I \in\binom{[n]}{k}} \left\lvert\,\left(x_{I}\right)_{I \in\binom{[n]}{k}} \in \operatorname{Gr}(k, n)\right.\right\}$
Maximum Likelihood Degrees:

$$
\begin{array}{cccccc}
& n=4 & n=5 & n=6 & n=7 & n=8 \\
k=2 & 4 & 22 & 156 & 1368 & 14400
\end{array}
$$

Maximum Likelihood Degrees:

$$
\begin{array}{cccccc}
& n=4 & n=5 & n=6 & n=7 & n=8 \\
k=2 & 3 & 12 & 60 & 360 & 2520
\end{array}
$$

The lower maximum likelihood degrees indicate that the model on the right is a natural probability model: it is an example of a determinantal point process!

Probability Distributions on the Grassmannian

Let P be a real, symmetric matrix with eigenvalues in [0,1]. A determinantal point process with kernel P is a random variable Z on $2^{[n]}$ such that

$$
\mathbb{P}[I \subseteq Z]=\operatorname{det}\left(P_{I}\right)
$$

where P_{I} is the $k \times k$ principal submatrix of P obtained by selecting the k rows and columns indexed by I.

Example ($\mathbf{n}=3$).

$$
P=\left(\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{12} & p_{22} & p_{23} \\
p_{13} & p_{23} & p_{33}
\end{array}\right) \quad \begin{array}{ll}
\mathbb{P}[\{2\} \subseteq Z]=p_{22} \\
\mathbb{P}[\{1,3\} \subseteq Z]=\operatorname{det}\left(\begin{array}{ll}
p_{11} & p_{13} \\
p_{13} & p_{33}
\end{array}\right)=p_{11} p_{33}-p_{13}^{2}
\end{array}
$$

Probability Distributions on the Grassmannian

If $P \in \operatorname{pGr}(k, n)$, then $\mathbb{P}[I=Z]=\left\{\begin{array}{ll}\begin{array}{l}\text { Relationship between Plücker embedding } \\ \text { and projection matrix embedding } \\ \operatorname{det}\left(P_{I}\right) \stackrel{ }{=} \\ 0\end{array} & x_{I \in\left(\frac{[n]}{2}\right)}^{\sum_{J}^{2}} x_{J}^{2}\end{array} q_{I}\right.$ if $|I|=k$
is the log likelihood function for a determinantal point process with kernel in $\mathrm{pGr}(k, n)$!

Degrees of Optimization Problems

$$
\begin{aligned}
& \text { optimize } f(\mathbf{x}) \\
& \text { subject to } G(\mathbf{x})=0
\end{aligned}
$$

Fixed $f(x)$:

$\checkmark f_{\mathbf{u}}(\mathbf{x})=\|\mathbf{x}-\mathbf{u}\|^{2} \quad$ Euclidean Distance Degree
$f_{\mathbf{u}}(\mathbf{x})=\sum u_{i} \log \left(x_{i}\right) \quad$ Maximum Likelihood Degree
$f_{\mathbf{u}}(\mathbf{x})=\sum u_{i} x_{i} \quad$ Linear Optimization Degree
;

Sum of Polar Degrees
Euler Characteristic
First Polar Degree

Eigenvalue Problem

Let M be real, symmetric, positive definite $n \times n$ matrix with eigenvalues $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}$.

Goal: compute an $n \times k$ matrix $X=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{k}\right]$ such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$.

$$
\begin{aligned}
& \text { maximize } \operatorname{trace}\left(X^{T} M X\right) \\
& \text { subject to } X^{T} X=\operatorname{ld}_{k} .
\end{aligned}
$$

Critical Points of the Eigenvalue Problem

maximize $\operatorname{trace}\left(X^{T} M X\right)$
subject to $X^{T} X=\operatorname{Id}_{k} \leftrightarrow\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle=\delta_{i j} \quad\left\{\begin{array}{l}\operatorname{rank}(\operatorname{Jac}(G(\mathbf{x})) \mid \nabla f(\mathbf{x}))=\operatorname{rank} \operatorname{Jac}(G(\mathbf{x})) \\ G(\mathbf{x})=0\end{array}\right.$
The critical points of this problem are matrices
X satisfying $X^{T} X=\operatorname{ld}_{k}$ and ∇ trace $\left(X^{T} M X\right)=2\left(\begin{array}{c}M \mathbf{x}_{1} \\ \vdots \\ M \mathbf{x}_{k}\end{array}\right)$ is in column span of

Critical Points of the Eigenvalue Problem

Let $\Theta \in O(k)$, where $O(k)$ is the group of orthogonal $k \times k$ matrices. Then
$\operatorname{trace}\left(\Theta^{T} X^{T} M X \Theta\right)=\operatorname{trace}\left(X^{T} M X \Theta \Theta^{T}\right)=\operatorname{trace}\left(X^{T} M X\right)$
$X^{T} X=\mathrm{Id}_{k} \Longrightarrow \Theta^{T} X^{T} X \Theta=\Theta^{T} \Theta=\mathrm{Id}_{k}$

Critical Points of the Eigenvalue Problem

Theorem. (F., Hoşten 2024+) Let M be a generic real symmetric $n \times n$ matrix and let X be an $n \times k$ variable matrix. The algebraic set of complex critical points of the eigenvalue optimization problem is

$$
\bigsqcup_{\left\{i_{1}, \ldots, i_{k}\right\} \in\binom{[n]}{k}}\left\{\left[q_{i_{1}} q_{i_{2}} \cdots q_{i_{k}}\right] \Theta: \Theta \in O(k)\right\}
$$

where q_{1}, \ldots, q_{n} is an orthonormal eigenbasis of M. This algebraic set is a disjoint union of $\binom{n}{k}$ irreducible varieties isomorphic to $O(k)$, and hence its dimension is equal to $\operatorname{dim}(O(k))$ and its degree is equal to $\operatorname{deg}(O(k)) \cdot\binom{n}{k}$.

Critical Points of the Eigenvalue Problem

Example. The variety $O(2)$ is the disjoint union of two circles, so the critical points of the eigenvalue problem for $k=2$ are

\{1,2\}

$\{1,3\}$

$\{1,4\}$

$\{n-1, n\}$

This variety has degree $4\binom{n}{2}$.

Rethinking Our Formulation

Optimizing over specific sets of basis vectors for our space

Optimizing over coordinate-free representations of our space

Rethinking Our Formulation

Figure 1. Convergence behavior of algorithms in the Stiefel and involution models.

"Simpler Grassmannian Optimization"
by Lai, Lim, and Ye
arXiv:2009.13502

Orthogonal Projection Matrices

L : k-dimensional subspace of $\mathbb{R}^{n} \quad A: n \times k$ matrix whose columns span L The $n \times n$ matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ is the unique projection matrix onto L.

The matrix P satisfies

$$
P^{T}=P, P^{2}=P \text { and } \operatorname{trace}(P)=k .
$$

If a symmetric matrix P satisfies the above equations, it is the projection matrix onto some k-dimensional subspace, so the projection Grassmannian is

$$
\operatorname{pGr}(k, n)=V\left(\left\langle P^{T}-P, P^{2}-P, \operatorname{trace}(P)-k\right\rangle\right) .
$$

Eigenvalue Problem on the Projection Grassmannian

Since the columns of X are orthonormal, we have

$$
P=X\left(X^{T} X\right)^{-1} X^{T}=X \operatorname{ld}_{k} X^{T}=X X^{T} .
$$

maximize $\operatorname{trace}\left(X M X^{T}\right)=\operatorname{trace}\left(M X X^{T}\right)$

subject to $X^{T} X=\mathrm{Id}_{k}$.\quad| maximize $\operatorname{trace}(M P)$ |
| :--- |
| subject to $P \in \operatorname{pGr}(k, n)$ |

$$
\left\{i_{1}, \ldots, i_{k}\right\}
$$

Eigenvalue Problem on the Projection Grassmannian

Theorem. (F., Hoşten 2024+) Let M be a generic real symmetric $n \times n$ matrix and let X be an $n \times k$ variable matrix. The algebraic set of complex critical points of the eigenvalue optimization problem over $\mathrm{pGr}(k, n)$ is

$$
\left\{\left[q_{i_{1}} q_{i_{2}} \cdots q_{i_{k}}\right]\left[q_{i_{1}} q_{i_{2}} \cdots q_{i_{k}}\right]^{T} \left\lvert\,\left\{i_{1}, \ldots, i_{k}\right\} \in\binom{[n]}{k}\right.\right\}
$$

where q_{1}, \ldots, q_{n} is an orthonormal eigenbasis of M. Therefore the degree of the eigenvalue optimization problem over $\operatorname{pGr}(k, n)$ is $\binom{n}{k}$.

Eigenvalue Problem on the Projection Grassmannian

If the columns of X form an orthonormal basis for the subspace, then we have

$$
P=X\left(X^{T} X\right)^{-1} X^{T}=X \operatorname{ld}_{k} X^{T}=X X^{T}
$$

maximize trace $\left(M X X^{T}\right)$
subject to $X^{T} X=\operatorname{ld}_{k}$.
maximize $\operatorname{trace}(M P)$
subject to $P \in \operatorname{pGr}(k, n)$

$$
\left\{i_{1}, \ldots, i_{k}\right\}
$$

Eigenspaces can be found by linear optimization over the Grassmanian!

"Eigendegree" = LO Degree

$$
\begin{aligned}
& \text { Example }(\mathbf{n}=3) . \quad M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{12} & m_{22} & m_{23} \\
m_{13} & m_{23} & m_{33}
\end{array}\right) \quad P=\left(\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{12} & p_{22} & p_{23} \\
p_{13} & p_{23} & p_{33}
\end{array}\right) \\
& \operatorname{trace}(M P)=m_{11} p_{11}+2 m_{12} p_{12}+2 m_{13} p_{13}+m_{22} p_{22}+2 m_{23} p_{23}+m_{33} p_{33} \\
& =u_{11} p_{11}+u_{12} p_{12}+u_{13} p_{13}+u_{22} p_{22}+u_{23} p_{23}+u_{33} p_{33} \\
& u_{11}=m_{11} \quad u_{12}=2 m_{12} \\
& u_{22}=m_{22} \quad u_{13}=2 m_{13} \\
& u_{33}=m_{33} \quad u_{23}=2 m_{23}
\end{aligned}
$$

"Eigendegree" = LO Degree

maximize trace $(M P)$
subject to $P \in \operatorname{pGr}(k, n)$

We can write the objective function as a generic linear form over $\operatorname{pGr}(k, n)$:

$$
\operatorname{trace}(M P)=\sum_{i \leq j} u_{i j} p_{i j}
$$

where

$$
u_{i j}= \begin{cases}2 m_{i j} & \text { if } i \neq j \\ m_{i j} & \text { if } i=j\end{cases}
$$

Eigenvalue Problem on the Projection Grassmannian

degree of the eigenvalue
problem over $\operatorname{pGr}(k, n)$
trace $(M P)$
linear optimization
degree of $\mathrm{pGr}(k, n)$
$f_{u}(x)=\sum u_{i j} p_{i j}$

Beyond the Grassmannian

Definition. The complete flag variety, denoted $\mathrm{Fl}(0,1, \ldots, k ; n)$, is the space of nested subspaces of dimension $0,1, \ldots, k$ in \mathbb{R}^{n}.

Example. A point in $\mathrm{Fl}(0,1,2 ; 3)$.

Proposition. (Ye, Wong, Lim 2022)
$\operatorname{pFl}(0,1, \ldots, k ; n)=\left\{\left(P_{1}, \ldots, P_{k}\right) \mid P_{i+1} P_{i}=P_{i}, P_{i}^{2}=P_{i}, \operatorname{trace}\left(P_{i}\right)=i\right\}$

Extending to Flag Varieties

degree of the eigenvalue
problem over $\mathrm{pGr}(k, n)$

$\left.\begin{array}{l}\text { degree of the } \\
\begin{array}{l}\text { heterogeneous quadrics } \\
\text { minimization problem } \\
\text { over } \mathrm{pFl}(1, \ldots, k ; n)\end{array}\end{array} \quad \begin{array}{l}\text { linear optimization } \\
\text { degree of } \mathrm{pGr}(k, n)\end{array} \quad \begin{array}{l}n \\
k\end{array}\right)$

linear optimization
degree of $\mathrm{pFl}(1, \ldots, k ; n)$

Heterogeneous Quadrics Minimization Problem

Given k generic real symmetric $n \times n$ matrices M_{1}, \ldots, M_{k},

subject to $X^{T} X=\mathrm{Id}_{k}$
subject to $\left(P_{1}, \ldots, P_{k}\right) \in \operatorname{pFl}(0,1, \ldots, k ; n)$

Compute!

Degrees of the problem
$\operatorname{maximize} \sum_{i=1}^{k} \mathbf{x}_{i}^{T} M_{i} \mathbf{x}_{i}$ subject to $X^{T} X=\mathrm{Id}_{k}$

$n=\mathbf{3}$	$n=4$	$n=5$	$n=6$	$n=7$	n	
$k=\mathbf{2}$	40	112	240	440	728	$4 \sum_{j=1}^{n-1} 2 j^{2}$
$k=3$		960	5536	21,440	???	???????

These numbers were produced with HomotopyContinuation.jl.

Degrees of Optimization Problems

$$
\begin{aligned}
& \text { optimize } f(\mathbf{x}) \\
& \text { subject to } G(\mathbf{x})=0
\end{aligned}
$$

Fixed $f(x)$:

$\checkmark f_{\mathbf{u}}(\mathbf{x})=\|\mathbf{x}-\mathbf{u}\|^{2} \quad$ Euclidean Distance Degree
$f_{\mathbf{u}}(\mathbf{x})=\sum u_{i} \log \left(x_{i}\right) \quad$ Maximum Likelihood Degree
$f_{\mathbf{u}}(\mathbf{x})=\sum u_{i} x_{i} \quad$ Linear Optimization Degree
:

Sum of Polar Degrees
Euler Characteristic
First Polar Degree

References

Maximum Likelihood Degree

"The Maximum Likelihood Degree"
by Catanese, Hoşten, Khetan, Sturmfels

Euclidean Distance Degree

"The Euclidean Distance Degree of an Algebraic Variety" by Draisma, Horobeț, Ottaviani, Sturmfels, Thomas

Linear Optimization Degree

"Linear Optimization on Varieties and Chern-Mather Classes" by Maxim, Rodriguez, Wang, Wu

The Grassmannian and Flags

"The Two Lives of the Grassmannian" by Devriendt, F. Reinke, Sturmfels
"Simpler Grassmannian Optimization" by Lai, Lim, and Ye
"Gradient Flows, Adjoint Orbits, and the Topology of Totally Nonnegative Flag Varieties"
by Bloch and Karp
"Optimization on Flag Manifolds"
by Ye, Wong, and Lim

Thank you!

