# A New Basis for $k$-Local Class Functions on $\mathfrak{S}_{n}$ 

Hannah Friedman<br>Advised by Professor Michael Orrison

January 5, 2023

Permatation
Statistics Land


## The Symmetric Group

## Definition

The symmetric group, $\mathfrak{S}_{n}$, is the set of permutations on the numbers $1,2, \ldots, n$.

## The Symmetric Group

## Definition

The symmetric group, $\mathfrak{S}_{n}$, is the set of permutations on the numbers $1,2, \ldots, n$.

## Notation

One-Line Notation: 413265 Cycle Notation: $(142)(3)(56)$

## The Symmetric Group

## Definition

The symmetric group, $\mathfrak{S}_{n}$, is the set of permutations on the numbers $1,2, \ldots, n$.

## Notation

One-Line Notation: 413265 Cycle Notation: $(142)(3)(56)$

## Definition

The cycle type of a permutation is the list of lengths of the cycles of the permutation when written in cycle notation.

## The Symmetric Group

## Definition

The symmetric group, $\mathfrak{S}_{n}$, is the set of permutations on the numbers $1,2, \ldots, n$.

## Notation

One-Line Notation: 413265 Cycle Notation: $(142)(3)(56)$

## Definition

The cycle type of a permutation is the list of lengths of the cycles of the permutation when written in cycle notation.

## Example

The cycle type of $(142)(3)(56)$ is $(3,2,1)$. The cycle type of $(1)(2)(3)(4)(56)$ is $\left(2,1^{4}\right)$.

## Fixed Point Function

## Definition

Define the fixed point function by $\operatorname{Fix}(\sigma)=\#\{i \in[n] \mid \sigma(i)=i\}$.

## Fixed Point Function

## Definition

Define the fixed point function by $\operatorname{Fix}(\sigma)=\#\{i \in[n] \mid \sigma(i)=i\}$.

## Example

The permutation $(12)(3)(4)(56)(7)$ has three fixed points: 3,4 , and 7 .

## Fixed Point Function

## Definition

Define the fixed point function by $\operatorname{Fix}(\sigma)=\#\{i \in[n] \mid \sigma(i)=i\}$.

## Example

The permutation $(12)(3)(4)(56)(7)$ has three fixed points: 3,4 , and 7 .

## Observation

The number of fixed point is the same as the number of 1-cycles in the cycle decomposition of the permutation...

## Class Functions

## Definition

A class function is a function $f: \mathfrak{S}_{n} \rightarrow \mathbb{C}$ that only depends on the cycle type of a permutation.

## Class Functions

## Definition

A class function is a function $f: \mathfrak{S}_{n} \rightarrow \mathbb{C}$ that only depends on the cycle type of a permutation.

## Example

The fixed point function is a class function. For instance, all permutations of cycle type $\left(2,1^{4}\right)$ have 4 cycles of length 1 .

## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.

$$
\begin{array}{lllll}
5 & 2 & 1 & 4 & 3
\end{array}
$$

## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.


## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.

$$
\begin{array}{lllll}
5 & 2 & 1 & 4 & 3 \\
& \uparrow & & &
\end{array}
$$

## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.


## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.


## $k$-Local Functions

A function is $k$-local if it can be evaluated by only looking at $k$ numbers in the permutation at a time!

## Example

The fixed point function is 1-local.


## Examples

## Example

Most permutation statistics are $k$-local, including

- Fixed Points
- Excedances
- Inversions
- Major Index
- k-cycle counts
- Pattern containment
but not
- Longest Increasing Subsequence
- Number of Cycles.

Land


## Why study $k$-local class functions?

The space of $k$-local class functions...

## Why study $k$-local class functions?

The space of $k$-local class functions...

- includes functions we care about like the fixed point function, irreducible characters, and permutation characters!


## Why study $k$-local class functions?

The space of $k$-local class functions...

- includes functions we care about like the fixed point function, irreducible characters, and permutation characters!
- is the intersection of two types of "nice" functions: $k$-local functions and class functions!


## Why study $k$-local class functions?

The space of $k$-local class functions...

- includes functions we care about like the fixed point function, irreducible characters, and permutation characters!
- is the intersection of two types of "nice" functions: $k$-local functions and class functions!
- we can use our toolbox of representation theory and symmetric functions!


## Irreducible Characters

## Proposition

The subset of irreducible characters of $\mathfrak{S}_{n},\left\{\chi^{\lambda} \mid \lambda_{1} \geq n-k\right\}$, forms a basis for the space of $k$-local class functions.

## Subtype Class Functions

$$
(1)(2)(3)(45)(67) \quad \mu=(2,1,1)
$$

## Subtype Class Functions



## Subtype Class Functions



## Subtype Class Functions



## Subtype Class Functions

## Definition

Suppose $\mu=1^{m_{1}} 2^{m_{2}} \ldots$ and $m_{1}+2 m_{2}+3 m_{3}+\ldots=k$. The subtype class function of type $\mu$, denoted by $T^{\mu}$, is the number of ways to choose $m_{1} 1$-cycles, $m_{2} 2$-cycles, etc from the permutation.

$$
T^{\mu}(\sigma)=\prod_{j=1}^{k}\binom{T^{(j)}(\sigma)}{m_{j}}
$$

## Subtype Class Functions

## Definition

Suppose $\mu=1^{m_{1}} 2^{m_{2}} \ldots$ and $m_{1}+2 m_{2}+3 m_{3}+\ldots=k$. The subtype class function of type $\mu$, denoted by $T^{\mu}$, is the number of ways to choose $m_{1} 1$-cycles, $m_{2} 2$-cycles, etc from the permutation.

$$
T^{\mu}(\sigma)=\prod_{j=1}^{k}\binom{T^{(j)}(\sigma)}{m_{j}}
$$

## Proposition ( Macdonald 1995)

If $\sigma$ has cycle type $\lambda$ and $\lambda=\mu \cup \rho$, then

$$
T^{\mu}(\sigma)=\frac{z_{\lambda}}{z_{\rho} z_{\mu}}
$$

## Subtype Class Functions

## Proposition

The subset of subtype class functions, $\left\{T^{\mu} \mid \mu \vdash k, \mu_{1} \leq n-k\right\}$, forms a basis for the space of $k$-local class functions.

Permatation Statistics Land


## References

围Gaetz，Christian and Laura Pierson（2022）．Positivity of permutation pattern character polynomials．eprint：arXiv：2204．10633v1．
R Gaetz，Christian and Christopher Ryba（2021）．＂Stable characters from permutation patterns＂．In：Selecta Mathematica 27，pp．1－13．
國 Garsia，A．M．and A．Goupil（2009）．＂Character polynomials，their q－Analogs，and the Kronecker Product＂．In：Electronic Journal of Combinatorics 16 （2）．DoI：https：／／doi．org／10．37236／85．
圊 Hamaker，Zachary and Brendon Rhoades（2022）．Characters of local and regular permutation statistics．eprint：arXiv：2206．06567v2（Math．CO）．
Hultman，Axel（2014）．＂Permutation statistics of products of random permutations＂．In：Adv．Appl．Math．54，pp．1－10．
（ Jacques，Alain（1972）．＂Nombre de cycles d＇une permutation et caractères du groupe symétrique＂．In：Permutation：Actes Du Colloque Sur Les Permutations，pp．93－96．
－Macdonald，I．G．（1995）．Symmetric Functions and Hall Polynomials． 2nd ed．New York：Oxford Universtiy Press Inc．

